

SBR and Natural Rubber Latex-Modified Emulsions for Micro Surfacing

MPPP Meeting September 9-11, 2008 Minneapolis, MN

Chris Lubbers
BASF Corporation

Erland Lukanen, P.E. Minnesota DOT Office of Materials

Helping Make Products Better™

Outline

- Asphalt emulsion primer
- What are polymers?
- Polymers for micro surfacing emulsions
 - Modification of asphalt emulsions
 - Latex polymer networks
 - Impact on binder + mix properties
- MN DOT micro surfacing perspective
- SBR latex-modified TH 55 demo details

Asphalt Emulsions - Formulation

Components

- Asphalt
- Surfactant (surface active agents, emulsifiers)
- Water
- Mechanical energy (colloid mill)

Other Ingredients

- Additives (calcium chloride, cutback agents,...)
- Modifiers Polymers

Asphalt Emulsions – Component Distribution

The Chemical Company

- Dispersion of asphalt in water
 - Water continuous phase
 - Asphalt non-continuous or dispersed phase
 - -Stabilized by surfactant
- Surfactant → emulsion class.
 - Cationic+ \square
 - Anionic
 - Nonionic

Asphalt Droplets 8 6 **Volume %** 2 0 0.1 10 100 Particle Size, μm

What are Polymers?

- **■** Comprised of many small molecules
 - Poly = many
 - Monomers = small molecules or repeat units
- Monomers chemically react → larger molecules
 - Water-based polymers latex form (SBR, NRL)
- **■** Properties are determined by:
 - Types and sequence of monomers
 - Molecular weight

Polymer Types for Micro Surfacing

- **SBR Latex Micro Surfacing**
- Natural Rubber Latex Ralumac (Micro Surfacing)
- Other Ground Tire Rubber GTR (REAS)

Typical Synthetic Latex Monomers

Polymers for Micro Surfacing Emulsions

- Elastomer Styrene-Butadiene Rubber SBR
 - Latex form polymer particles dispersed in water
 - Random monomer addition typ. 75/25 Bd/styrene
 - High molecular weight 1,000,000 g/mole
 - -13,900 Bd "mers", 2400 styrene "mers"
 - Broad distribution chains many different lengths

Polymers for Micro Surfacing Emulsions

- Elastomer Polyisoprene Natural Rubber
 - Latex form polymer particles dispersed in water
 - Homopolymer of isoprene harvested from trees
 - High molecular weight 1,000,000 g/mole
 - Broad distribution chains many different lengths

Viscoelastic Behavior Cured Latex Modified Asphalt Emulsion

- $G^* = f(T) = deform. resist.$
- Asphalt
 - High G* at low T brittle
 - Low G* at high T viscous
 - $\Delta G^*(80^{\circ}C 20^{\circ}C) = 1000x$
- SBR Polymer
 - Lower G* at low T flexible
 - Higher G* at high T elastic
 - $\Delta G^*(80^{\circ}C 20^{\circ}C) = 10x$

Polymer Modification of Asphalt Emulsions

Add latex external to asphalt

- Methods
 - soap batching
 - co-milling asphalt line
 - co-milling soap line
- Polymers SBR, NR latex
- Lower asphalt process T
- No special mill, handling
- Polymer in water phase
- Continuous polymer film formation on curing

Latex Polymer-Modified Asphalt Emulsion

Optimum for Fine Polymer Network Formation

Microsurfacing Operation

Microsurfacing – High ADT + ESAL's

Micro Surfacing Mix Formulation

- Blade Coating Operation
 - 2 m wide + <1 cm thick
 - 4-5 km/hour
 - Traffic within 1 hour
- Latex Polymer Binds
 - Asphalt
 - Fines to Aggregates

Micro Surfacing-Polymer Morphology Field Application

Texas State Highway 84

- Near Waco,TX
- Paved in 1998
- Samples taken in 2001

Cured Latex Polymer Network

Micro Surfacing

Latex Foam

Wet Track Abrasion Loss – ISSA TB-100

SBR latex polymer

- 50% reduction in loss
 - one hour soak
- 67% reduction in loss
 - six day soak
- Surface of mix
 - tougher
 - more abrasion res.

improved

Cohesion Development – ISSA TB-139

Lateral Displacement – ISSA TB-147

■ SBR latex at 3% will decrease lateral disp. by ~ 90%

Microsurfacing Residue - SHRP Grade

Advantages of Latex Polymer Network

- Latex polymer honeycombs remain flexible
 - Absorb stresses without permanent deformation

SBR+NRL-Modified Micro Surfacing Summary

Micro Surfacing

- Improved mix cohesion
- Reduction in abrasion loss of aggregate
- Resistance to deformation

Micro Surfacing in Minnesota History

- Intro to micro surfacing from Koch in late 1980s
- Small trial projects until 1999
- 1999 First large contract for micro surfacing
 - Single statewide contract to demonstrate
 - -rut filling
 - -friction improvement
 - -ride improvements
 - About 125 lane miles

Micro Surfacing in Minnesota Current Practices

- Roadways with over 10,000 AADT
- Project selection in Pavement Management System
- Much of our micro surfacing work done at night
 - Minimizes traffic disruption
 - Requires a 1000-foot night time test strip
 - To demonstrate micro surfacing mix meets our one-hour cure time requirement

Micro Surfacing in Minnesota Current Specification

- Requires natural rubber latex polymer
- Contractor provided mix design
- Ambient temperature above 50°F
- Work complete before September 15th

Micro Surfacing in Minnesota Current Application Areas

- Pavement preservation
- Rut filling
- Centerline longitudinal joint treatment (18" wide)
- Friction improvements
- Some ride improvements

Micro Surfacing in Minnesota Performance

- Generally adds about five years to the life of our bituminous pavements (ride criteria)
- Failure modes include:
 - Debonding
 - Raveling and abrasion wear
- Is it cost effective?
 - About neutral for LCCA

Minnesota DOT SBR Latex-Modified Micro Surfacing Demo 2008 MPPP - TH 55

TABLE I AGGREGATE ANALYSIS VANCE BROTHERS, INC.

SIEVE#	ISSA TYPE II SPECIFICATIONS	% PASSING
4	90-100	96.9
8	65-90	75.6
16	45-70	53.3
30	30-50	37.5
50	18-30	24.6
100	10-21	15.8
200	5-15	10.8

TEST	ISSA SPECIFICATION	RESULT
Sand Equivalent	65	83

TABLE II MICRO-SURFACING EMULSION FORMULATION VANCE BROTHERS, INC.

COMPONENT	PERCENTAGE, BY WEIGHT EMULSION	
Emulsifier	1.7	
Latex NX 1138	3.5	
Water	32.8	
Hydrochloric Acid	to pH 2.0	
Asphalt: Amoco Whiting AC-20	62.0	

SBR Latex-Modified Micro Surfacing Formulation

ISSA Type II
Aggregate
Gradation
(AASHTO T11/T27)

Minnesota DOT SBR Latex-Modified Micro Surfacing Demo 2008 MPPP - TH 55

TABLE III MICRO-SURFACING EMULSION TEST RESULTS VANCE BROTHERS, INC.

TEST PROCEDURE	RESULTS	
Residue, %	65.5	
Sieve, %	.0105	

TABLE IV MICRO-SURFACING JOB MIX FORMULATION VANCE BROTHERS, INC.

COMPONENT	PERCENTAGE, ON DRY	
COMIONENT	AGGREGATE BASIS	
Type I Portland Cement	0.25-0.75	
Total Water	10-12	
Pre-Wet Solution (4% Emulsifier in Water)	As Required	
Emulsion	12-13	
Aggregate:	100	

Residue after
Distillation
(AASHTO T59)
+
Job Mix Formula

Minnesota DOT SBR Latex-Modified Micro Surfacing Demo 2008 MPPP - TH 55

TABLE V MICRO-SURFACING MIX EVALUATION VANCE BROTHERS, INC.

TEST PROCEDURE	ISSA SPECIFICATION	RESULTS
Mixing Time, seconds	120 Minimum	120+
Wet Cohesion, kg-cm @ 30 minutes	12 Minimum	19
@ 60 minutes	20 Minimum or Near Spin	22
Wet Track Abrasion Loss, g/ft²,		
One-hour Soak	50 Maximum	12.8
Six-day Soak	75 Maximum	25.5
Lateral Displacement, %	5% Maximum	5.0
Vertical Displacement, %	None Specified	16.5
Excess Asphalt by LWT		
Sand Adhesion, g/ft ²	50 Maximum	36.2
Wet Stripping, %	90 Minimum	90+
Classification Compatibility, Grade Point	11 Minimum	11+

Mix Design Testing

- ISSA TB-113
- ISSA TB-139
- ISSA TB-100
- ISSA TB-147
- ISSA TB-109
- ISSA TB-114
- ISSA TB-144

Acknowledgements

- Paul Nolan Minnesota DOT
- **Vance Brothers, Inc.**
 - Mark Smith
 - Marty Burrow
 - Stan Fronckewicz
 - Tim Harrawood
- Peter Montenegro BASF Corporation